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Exact fields are obtained by the present method which can be
used to form trial fields for variational calculations. Besides, the
same method can be used for fundamental as well as other higher
order modes to obtain n, and field profiles.
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Abstract —The cutoff wavenumbers of TE and TM modes (higher order
modes) in a tubular line having an offset center conductor have been
calculated. Whereas most previous methods used to study this structure
were of an approximate nature, the analytical method developed by Singh
and Kothari leads to a rigorous analytical formulation. The boundary
conditions ‘'on both conductor boundaries, assumed to be perfectly conduct-
ing, are satisfied exactly. The cutoff values calculated show that some
results previously reported are inaccurate.

I. INTRODUCTION

Introducing a lateral offset in the center conductor of a coaxial
line provides a simple way to decrease its characteristic imped-
ance without modifying the dimensions of the conductors [1], [2].
This technique can be used to realize quarter-wave transformers
and other matching devices. The properties of the dominant TEM
mode can readily be determined with conformal mapping. Fur-
thermore, it is also necessary to determine the cutoff frequency of
higher order modes which set an upper limit to the useful
frequency of operation.

The propagation along this geometry was considered by several
authors [2]-[6] using approximate techniques for its analysis (in
particular, point-matching and conformal mapping). While most
articles did not indicate which accuracy was obtained, one recent
article [6] provides an upper and a lower bound. In some in-
stances, however, the range between the bounds is rather large
(up to 20 percent), making the use of the results of little practical
interest. For some other situations, the bounds for successive
solutions actually overlap one another.

The same problem was tackled analytically by other authors
[71-[9). A special perturbation method was developed in [8]. It
could be useful when extended to dielectric waveguides or ec-
centric Goubau lines [10], but the study considers only small
eccentricities. Some of the tabulated parameters of [8] actually
yield nonphysical results; also, symmetric and antisymmetric
modes appear to be degenerate, which contradicts experimental
observations. Finally, an analytical method devised to analyze the
related problem of a circular plate with an eccentric circular hole
[9] yields incorrect final expressions. Detailed comments on this
paper have appeared recently [17].

The analysis of previous publications shows that, even though
considerable effort has been devoted to the study of this geome-
try, the available techniques are still either approximate when not
altogether incorrect.

A rigorous mathematical derivation is presented in the present
paper. The Helmholtz equation for higher order modes is solved
exactly, and the boundary conditions on the two offset conduc-
tors are satisfied by the technique developed by Singh and
Kothari [11], based on Graf’s addition theorem for Bessel func-
tions [12]. One obtains in this manner an infinite set of linear
equations which must be truncated to permit numerical calcu-
lations. The accuracy of the results can be arbitrarily improved
upon by taking additional terms.

II. Basic THEORY

The longitudinal direction of the offset tubular line, to which
the axes of the two conductors are parallel, is the z direction. The
system is symmetrical with respect to the x axis; its transverse
cross section is shown in Fig, 1, in which all significant dimen-
sions are also reported. Two polar coordinate systems, labeled
(r,0) and (#,0"), are defined with respect to the centers of the
two conductors located at 0 and 0, respectively.

The general solution for the transverse dependence of the
potential is obtained by solving the two-dimensional Helmholtz

0018-9480,/86 /0200-0292$01.00 ©1986 IEEE
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Fig. 1. Cross section of an annular eccentric circular cylindrical waveguide.

equation in the cylindrical coordinate system [13], An infinite
series expansion is obtained [14]

> 2]
¥(r.0)= ¥ {4l (k) + B, (k) }{ Gamb) (1)
m=0

where J,, and ¥, are the mth order Bessel functions of the first
and second kind, k= w‘/e-p is the wavenumber in the medium
between the two conductors, and A4,, and B,, are constants to be
determined from the boundary conditions. The cosine solution
provides the symmetric modes, the sine solutions the antisymmet-
ric ones.

For TE modes, ¢ = H, must satisfy the Neumann boundary
condition, while, for TM modes, ¢ = E, must meet the Dirichlet
boundary condition. At the edge of the inner conductor, at r = a,
these conditions become for TE modes

Lid

ar |, _

=0, hence 4,J,(ka)+ B,Y/(ka)=0

a

and for TM modes
¥(a) =0, hence 4,J,(ka)+B,Y, (ka)=0  (2)

where the prime denotes the derivative with respect to the func-
tion’s argument.

The boundary condition on the outer conductor must now be
satisfied at r’ = b, i.e., within the polar coordinate system related
to 0’. The coordinate transformation from one system to the
other is taken care of by Graf’s addition theorem for Bessel
functions [12]

P=n
Z,(kr)exp(jma) =} Z,.,(kr')J,(kd)exp(jpb’) (3)

p=—o

where Z, (x) stands either for J,,(x) or Y,,(x), a=0— 6" (Fig.
1) and r'> d. The expression (1) can then be transformed into
the primed coordinate system; the boundary conditions— similar
to (2)— are introduced at r’ = b, yielding a set of linear equa-
tions the determinant of which must vanish if nontrivial solutions
are to exist.

For TE modes

det|B,,, ()] =0 (4)
where the elements of the determinant are given by

Ji(kb)  Y;(kb)
J;,(ka) Y, (ka)

XSy (k) +(=1) T, (k) (5)

P, (b) = (

TABLE I
TE CutofF WAVENUMBERS OF ECCENTRIC WAVEGUIDES FOR
VARIOUS 1 AND D

SYMMETRIC ANTISYMMETRIC
Present Lower Upper Present Lower Upper
Method Bound Bound Method Bound Bound
1.2522% 1.32027 1.32221 | 1.1917 1.19001 1.19176
- ay3]2-4365 2.4408  2.4u48 2.4307K 2.4267  2.4305
;‘ Z ol p|3-6209 3.6157  3.6281 3.6203 3.6142  3.6203
*“l4.7897 4.7804  4.7901 4.7896 4.7804  4.7899
5.9379 5.9218  5.9385 5.9379 5.9231  5.9385
1.4407% 1.5132  1,5199 1.3740 1.3715  1.374)
ns0.475] 27256 2.7210  2.7345 2.7187 2.7125  2.7198
d-0.312|3-9240 3.8978  3.92u8 3.9244  3.9069  3.9247
. - 4.343 4,407 5.0796 5.041 5.083
5.0799 4.977 5.087 5.3686 5.325 5.427
1.5616% 1.5766  1.5807 1.5435 1.5393  1.5476
= 1/3|2-908% 2.8968  2.9067 2.9058 2.8966  2.9067
‘d‘ = 2yg|4-1152 t.oout 41161 4.1152 4.0955  4.1161
4.4220% 4.2146  4,2356 5.1606 5.131 5.167
5.2669 5.219 5.270 5.2758 5.237 5.279
1.3793% 1.4069% 1.40793 | 1.3522 1.35114 1.35219
= 0.5)|2-6849 2.6837  2.6882 2.6838 2.5815  2.6840
g - g 539295 3.9247  3.9298 3.9296 3.9247  3.9298
: - 4.9937  5.0192 5.1131  5,1015 5.1138
5.1131  5.1031  5.1139 5.8106 5.793 5.834
1.6650K 1.6768  1.6813 1.6490 1.6446  1,6430
n=0.25] 29678 2.9445  2.9684 2.9667 2.9547  2.9682
d=0 22 - 5.939 3.983 4.1579 4.120 4.160
P luaigl 4l109 4.163 5.0616% 4,973 5.060
5.2942 5.111 5.303 5.2965 5.175 5.302
_ [1.7769 1.7603  1.7946 1.7584  1.7330  1.7584
0 ;‘5875 2.9932 2.871 3,004 2.9848 2.873 2.989
de0379 3.8632% 3,432 3.775 4.1590 3.78 417
: 4.1808 3.76 4.21
Lower and upper bounds are from [6).
For TM modes
det|Q,,,(5)[=0 (6)
with the elements of the determinant
AN RAC)RRAL)
an( )—

J,(ka) B Y, (ka)

X(Fyem (kd) +(=1)'T, 1, (kd)). (7)

In both (5) and (7), !/ = m for symmetric modes and /= m +1 for
antisymmetric modes.

The limiting case of the coaxial line is obtained by simply
letting d = 0 within (5) and (7). All the off-diagonal terms of the
matrices (4) and (6) then vanish, yielding P,,(6)=0 and
Q.. (b) = 0, which are precisely the dispersion equations for the
TE and TM modes in a coaxial line [15]. This fact actually
provides a simple way to check the accuracy of the calculations
by taking their limit when d — 0 and comparing with the values
in [16).

III. RESULTS AND DiIscUSSION

Results are normalized by letting the radius b of the outer
cylinder equal unity. The zeros of (4) and (6) were determined,
for several values of the eccentricity d and of the radius ratio 1,
in all cases for the first five TE and TM modes, both symmetrical
and antisymmetrical. Numerical values accurate to the fifth deci-
mal place were obtained, with determinants up to order 10. In
practice, such a high level of accuracy is not required since the
asymmetry of the conductors, irregularities in the cross sections,
finite conductivity of the metallic boundaries, and imperfect
dielectric may well introduce significant disturbances. In the
present case, highly accurate values were calculated in order to
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TABLE II
TE CuTOFF WAVENUMBERS OF ECCENTRIC WAVEGUIDES FOR
VARIOUS 1 AND D
SYMMETRIC ANTISYMMETRIC
Present Lower Upper Present Lower Upper
Method Bound Bound Method Bound Bound
5.4695 5.46911 S.4704 5.9918 5.99121 5.9925
= g.5|6-4747 6.47H03  6.47547 | 6.9203 6.91953 6.92102
2 - o.1|7-3062 7.30527 7.30683 | 7.7123 7.71130 7.71299
*1]7.8692 7.86823 7.86982 | 8.4845 8.4830  8.4857
8.4965 8.4950  8.4972 9.3564 9.3542  9.3572
45,8106 4.80953 4.81197 | 5.511% 5.5098  5.5125
- g.5l6.1724 6.1703  6.1735 6.7991 6.7964  6.8002
2 D o0.p|7-3945 7.3807  7.3957 7.9607 7.9559  7.9619
*18.4974  8.4894  8.4991 9.0091 8.9996  9.0106
9.3409 9.2694  9.3485 9.9556 9.9316  9.9677
4.3071 4.3042  4.3118 5.1222 5.1179  5.1257
n = 0.5|5-8993 5.8730  5.8940 6.6210 6.5994  6.625
d = 0'3 7.3197 7.240 7.325 7.9910 7.878 7.997
*?18.2909 8.081 8.316 9.1877 8.829 9.210
8.6388 8.382 8.648 9.2676 8.900 9.276
6.2399 6.2379  6.2429 6.9683 6.9654  6.9702
n=273 |7-6769 7.6728  7.6787 8.3682 8.3631  8.3800
d=g.p 19,0439 9.0523  9.0456 9.7053 9.6922  9.7071
““ 10.3536 10.318  10.356 10.9892 10.947  10.992
11.618K11.539  11.616 12.2266K12.128  12.219
3.4723 3.4687  3.4752 4.2640 4.2583  4,2680
n=0.25|%-9221 B.9110  4.924g 5.5393 5.5239  5.5423
d=0.25]5+9268 5.393 5.932 6.6357 6.502 6.941
“216.7154  6.591 6.723 7.7135  7.443 7.723%
6.7527 6.622 6.767 7.7243  7.488 7.735
2.9824 2.887 2.996 4.0338 3.858 4,043
n=0.25]% 7868 4.088 4.827 5.5432 4.50 5.75
d:o.s 5.8084 5.977 6.9144 6.992
‘ 6.2439 6.323 7.1560 7.208
7.5592 7.735 8.1858 8.395

Lower and upper bounds are from [6].

allow for comparison with the results previously published by
Kuttler [6].

Table I presents the symmetric and antisymmetric cutoff wave-
numbers in terms of n and 4 for TE modes, while the corre-
sponding values for TM modes appear in Table II. Both tables
also list the lower and upper bounds provided by Kuttler [6]. In
most cases, the actual cutoff wavenumber lies close to Kuttler’s
upper bound, while in some cases (marked by an asterisk), they
fall outside of the bounds. Furthermore, in three situations marked
by a bar (—), it was not possible to obtain a zero of the
determinant within or near the ranges reported by Kuttler, even
when taking determinants of order 15.

All the calculations were made with perfect conductor
boundaries, i.e., the effect of metallic losses was not taken into
account. As the values of the fields can be determined, the effect
of finite metal conductivity on the cutoff may be evaluated using
the usual perturbation technique. It should, however, be noted
that the cutoff wavenumber then becomes complex, so that the
cutoff is not clearly defined as in the lossless case.
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Fully Computer-Aided Synthesis of a Planar
Circulator

TANROKU MIYOSHI, MEMBER, 1EEE, AND TEITI SHINHAMA

I. INTRODUCTION

A planar junction circulator consists, in general, of a three-fold
symmetric resonator of arbitrary shape to which three transmis-
sion lines are connected. So far, the circulators having disk [1],
triangle, and hexagonal resonators [2], [3] have been studied in
detail. In the analysis of the circuit parameters of circulators, two
general methods which were presented in 1977 [4] are used
widely. One is based upon a contour-integral solution of the wave
equation. In the other approach, the circuit parameters of the
junction are expanded in terms of the eigenmodes of the mag-
netized planar resonator. Since both methods have been applied
successfully to various circulators, there is no doubt as to the
usefulness of the methods at present.

As a next step, we have to develop an algorithm to synthesize a
circulator. We had studied the optimum design of a planar
circulator for wide-band operation based upon a computer-aided,
but trial-and-error, approach [5]. The results obtained were far
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