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Exact fields are obtained by the present method which can be

used to form trial fields for variational calculations. Besides, the

same method can be used for fundamental as well as other higher

order modes to obtain n ~ and field profiles.
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Abstract —The cutoff wavenumbers of ‘H? and TM modes (higher order

modes) in a tnbnlar line having an offset center conductor have heen

calculated. Whereas most previous methods used to stndy this structure

were of an approximate nature, the analytical method developed by Singh

and Kothari leads to a rigorous analytical formulation. The boundary

conditions ‘on both conductor boundaries, assumed to be perfectly conduct-

ing, are satisfied exactly. The cutoff values cafcutated show that some

results previously reported are inaccurate.

I. INTRODUCTION

Introducing a lateral offset in the center conductor of a coaxial

line provides a simple way to decrease its characteristic imped-

ance without modifying the dimensions of the conductors [1], [2].

This technique can be used to realize quarter-wave transformers

and other matching devices. The properties of the dominant TEM

mode can readily be determined with conformal mapping. Fur-

thermore, it is also necessary to determine the cutoff frequency of

higher order modes which set an upper limit to the usefuf

frequency of operation.

The propagation along this geometry was considered by several

authors [2]–[6] using approximate techniques for its analysis (in

particular, point-matching and conformal mapping). While most

articles did not indicate which accuracy was obtained, one recent

article [6] provides an upper and a lower bound. In some in-

stances, however, the range between the bounds is rather large

(up to 20 percent), making @e use of the results of little practical

interest. For some other situations, the bounds for successive

solutions actually overlap one another.

The same problem was tackled analytically by other authors

[7]-[9]. A special perturbation method was developed in [8]. It

could be useful when extended to dielectric waveguides or ec-

centric Goubau lines [10], but the study considers only small

eccentricities. Some of the tabulated parameters of [8] actually

yield nonphysical results; also, symmetric and antisymmetnc

modes appear to be degenerate, which contradicts experimental

observations. Finally, an analytical method devised to analyze the

related problem of a circular plate with an eccent~c circular hole

[9] yields incorrect final expressions. Detailed comments on this

paper have appeared recently [17].

The analysis of previous publications shows that, even though

considerable effort has been devoted to the study of this geome-

try, the available techniques are still either approximate when not

altogether incorrect.

A rigorous mathematical derivation is presented in the present

paper. The Helmholtz equation for higher order modes is solved

exactly, and the boundary conditions on the two offset conduc-

tors are satisfied by the technique developed by Singh and

Kothari [11], based on Graf’s addition theorem for Bessel func-

tions [12]. One obtains in this manner an infinite set of linear

equations which must be truncated to permit numerical calcu-

lations. The accuracy of the results can be arbitrarily improved

upon by taking additional terms.

II. BASIC THEORY

The longitudinal direction of the offset tubular line, to which

the axes of the two conductors are parallel, is the z direction. The

system is symmetrical with respect to the x axis; its transverse

cross section is shown in Fig. 1, in which all significant dimen-

sions are also reported. Two polar coordinate systems, labeled

(r, 0) and (r’, 0’), are defined with respect to the centers of the

two conductors located at O and O’, respectively.

The general solution for the transverse dependence of the

potential is obtained by solving the two-dimensional Helmholtz

0018-9480/86/0200-0292$01.00 ~1986 IEEE
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Fig. 1. Cross section of an annular eccentric circular cylindrical waveguide.

equation in the cylindrical coordinate system [13]. An infinite

series expansion is obtained [14]

where Jm and Y* are the m th order Bessel functions of the first

and second kind, k = afi is the wavenumber in the medium

between the two conductors, and Am and Bm are constants to be

determined from the boundary conditions. The cosine solution

provides the symmetric modes, the sine solutions the antisymmet-

ric ones.

For TE modes, ~ = Hz must satisfy the Neumann boundary

condition, while, for TM modes, ~ = E= must meet the Dirichlet

boundary condition. At the edge of the inner conductor, at r = a,

these conditions become for TE modes

a+
dr ,=a

= O, hence A~J~(ka) + BMY~(ka) = O

and for TM modes

~(a) =0, hence A~J~(ka)+B~Ym(lca) =0 (2)

where the prime denotes the derivative with respect to the func-

tion’s argument.

The boundary condition on the outer conductor must now be

satisfied at r’= b, i.e., within the polar coordinate system related
to O’. The coordinate transformation from one system to the

other is taken care of by Graf’s addition theorem for Bessel

functions [12]

*=W

Zn, ( h-) exp( jma) = ~ Zm.P( kr’)JP( kd) exp( jpe’) (3)
~=. w

where Z~(x) stands either for Jn(x) or Y~(x), a = O – 0’ (Fig.

1) and r’> d. The expression (1) can then be transformed into
the primed coordinate system; the boundary conditions—similar
to (2) — are introduced at r’= b, yielding a set of linear equa-

tions the determinant of which must vanish if nontrivial solutions

are to exist.

For TE modes

(4)

where the elements of the determinant are given by

(4( kb) ~(kb)
P.,,,(b)= —–—

J~(ka) Yj(ka) )

x( Jn_m(kd)+( -l) ’J.+~(kd)) (5)

TABLE I
TE CUTOFF WAVENUMBERS OF ECCENTRIC WAVEGUIDES FOR

VARIOUS q AND D

SYMMETRIC ANTI SYMMETRIC

Present Lower Upper Present Lower Upper
Method Bound Bound Method Bound Bound

1.2522* 1.32027 1.32221 1.1917 1.19001 1.19176

~ ~ :,; ;::;:: ::::;; ;;;;; 2.4307* 2.4267 2.4305

5.6203 3.6142 3.6203
4.7897 4.78o4 :4 7901 4.7896 4.7804 4.7B99
5.9379 5.9218 5.9385 5.9379 5.9231 5.938S

1.4407* 1.5132 1.5199 1.3740 1.3713 1.3741

“=0.475 2.7256 2.7210 2.7345 2.7187 2.7125 2.7198

d= O.31s 3“9:40 ~:;~;8 :“::;’
?. 9244 3.9069 3.9247

5.0796 5.041 5.083
5.0799 4.977 5:087 5.36B6 5.325 5.427

1.5619* 1.5766 1.5807 1.5435 1.5393 1.5476
“ . ,,3 2.9o64 2. B96B 2.9067 2.9058 2.8966 2.9o67

4.1152 4.0944 4.1161 4.1152 4.0955 4.1161
d ‘ 2/9 4.422o* 4.2146 4.2356 5.1606 5.131 5.167

5.2669 5.219 5.270 5.275B 5.237 5.’279

1.3793* 1.40694 1.40793 1.3522 1.35114 1.35219

; ; ::: ;::;;; ;:;;; ::::;; 2.6B38 2.5815 2.684o
3.9296 3.9247 3.9298

4.9937 5.0192 5.1131 5.1015 5.1138
5.1131 5.1031 5.1139 5.8106 5.795 5.834

1.6650* 1.6768 1.6813 1.6490 1.6446 1,6490
“=0,25 2.9678 2.9445 2.96B4 2.9667 2.9547 2.9682

d=o. z5 4.,;9,
3.939 3.983 4.1579 4.120 4.160
4.109 4.163 5.0616*4.973 5.060

5.2942 S. Ill 5.303 5.2965 5.175 5.302

1 .7946 1.7584 1.7330 1.7584

;3:5~;; ~;;~:;* ~:{;;3 3.004 2.9848 2.873 2.989

3.775 4.1590 3.78 4.17
4.1808 3.76 4.21

Lower and upper bounds are from [6].

For TM modes

detlQ~. (b)l = O

with the elements of the determinant

(

J,(kb) ~(kb)
Q.,,(b)= —-—

Jm(ka) Ym(ka) )

(6)

x( Jn_m(kd) +(-q’Jn+w(kd)). (7)

In both (5) and (7), 1= m for symmetric modes and 1= m + 1 for

antisymmetric modes.

The limiting case of the coaxial line is obtained by simply

letting d = O within (5) and (7). All the off-diagonal terms of the

matrices (4) and (6) then vanish, yielding PM~ ( b ) = O and

Qn,~ (b)= O, which are precisely the dispersion equations for the

TE and TM modes in a coaxial line [15]. This fact actually

provides a simple way to check the accuracy of the calculations

by taking their limit when d ~ O and comparing with the values

in [16].

III. RESULTS AND DISCUSSION

Results are normalized by letting the radius b of the outer

cylinder equal unity. The zeros of (4) and (6) were determined,

for several values of the eccentricity d and of the radius ratio q,

in all cases for the first five TE and TM modes, both symmetrical

and antisymmetncal. Numerical values accurate to the fifth deci-

mal place were obtained, with determinants up to order 10. In

practice, such a high level of accuracy is not required since the

asymmetzy of the conductors, irregularities in the cross sections,

finite conductivity of the metallic boundaries, and imperfect

dielectric may well introduce significant disturbances. In the

present case, highly accurate values were calculated in order to
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TABLE II

TE CUTOFFWAVENUMBERSOFECCENTRICWAVEGUIDESFOR
VARIOUS lf AND D

SYMMETRIC ANTI SYMMETRIC

Present Lower Upper Present Lower Upper
Method Bound Bound Method Bound Bound

5.4695 5.46911 5.47o4 5.9918 5.99121

6.4747
5.99251

6.47403 6.47547 6.9203 6.91953 6.92102
: : ::: 7.3062 7.50527 7.3 fJ683 7.7123 7.71130 7.7)299

7.8692 7.86823 7.86982 8.4845 8.4830 8.4857
8.4965 8.4950 8.4972 9.3564 9.3542 9.3572

4.8106 4.80953 4.81191 5.5114 5.5098 5.5125

6.1703 6.1735“=05 6.1724 6.7991 6.7964 6.8002

d = 0:2 7.3945 7.3907 7.3957 7.9607 7.9559 7.9619
8.4974 8.4894 8.4991 9.0091 8.9996 9.0106
9.3409 9.2694 9.34s5 9.9556 9.9316 9.9677

4.3071 4.3042 4.3118 5.1222 5.1179 5.1257
8903 5.8730“ , 0.5 5. 5.8940 6.6210 6.5994 6.6251

~ = 0.3 7.3197 7.240 7.325 7.9910 7.878 7.997
8.2909 8.081 8.316 9.1877 8.829 9.210
8.6388 8.382 8.648 9.2676 8.900 9.276

6.2399 6.2379 6.2429 6.9683 6.9654 6.9702
7.6769 7.6728

n = 2/3
7.6787 8.3682 8.3631 8.3800

d= o.?
9.0439 9.0323 9.0456 9.7o53 9.6922 9.7071

10.3536 10.318 10.356 10.9892 10.947 10.992
11.6184*11.539 11.616 12.2266*12.128 12.219

3.4723 3.4687 3.4752 4.2640 4.2583 4.268o
4.9221 4.9110 4.9249 5.5393 5.5239 5.5423

;::::; 5.9268 5.393 5.932 6.6357 6.5o2 6.941
6.7154 6.591 6.723 7.7135 7.443 7.723
6.7527 6.622 6.767 7.7243 7.488 7.735

2.9824 2.887 2.996 4.0358 3.858 4.043
4.7868 4.o88 4.827 5.5432 4.50 5.75

n= 0.25 s 8084
d=o.5 5.977 6.9144 6.992

6:2439 6.323 7.1560 7.2o8
7.5592 7.735 8.1858 8.395

Lower and upper bounds are from [6]

allow for comparison with the results previously published by

Kuttler [6].

Table I presents the symmetric and antisymmetric cutoff wave-

numbers in terms of q and d for TE modes, while the corre-

sponding values for TM modes appear in Table II. Both tables

also list the lower and upper bounds provided by Kuttler [6]. In

most cases, the actual cutoff wavenumber lies close to Kuttler’s

upper bound, while @ some cases (marked by an asterisk), they

fall outside of the bounds. Furthermore, in three situations marked

by a bar (—), it was not possible to obtain a zero of the

determinant within or near the ranges reported by Kuttler, even

when taking determinants of order 15.

All the calculations were made with perfect conductor

boundaries, i.e., the effect of metallic losses was not taken into

account. As the values of the fields can be determined, the effect

of finite metal conductivity on the cutoff may be evaluated using

the usual perturbation technique. It should, however, be noted

that the cutoff wavenumber then becomes complex, so that the
cutoff is not clearly defined as in the lossless case.
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Fully Computer-Aided Synthesis of a Planar

Circulator

TANROKU MIYOSHI, MEMRER, IEEE, AND TEIJI SHINHAMA

L INTRODUCTION

A planar junction circulator consists, in general, of a three-fold

symmetric resonator of arbitrary shape to which three transmis-

sion lines are connected. So far, the circulators having disk [1],

triangle, and hexagonal resonators [2], [3] have been studied in

detail, In the analysis of the circuit parameters of circulators, two

general methods which were presented in 1977 [4] are used

widely. One is based upon a contour-integral solution of the wave

equation. In the other approach, the circuit parameters of the

junction are expanded in terms of the eigenmodes of the mag-

netier-1 planar resonator. Since both methods have bccrr applied

successfully to various circulators, there is no doubt as to the

usefulness of the methods at present.

As a next step, we have to develop an algorithm to synthesize a

circulator. We had studied the optimum design of a planar

circulator for wide-band operation based upon a computer-aided,

but trial-and-error, approach [5]. The results obtained were far
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